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66 Coordinate systems

The angle between two celestial objects

Sometimes it is of interest to know what is the angle between two objects in the sky, and this can be
calculated very easily provided their equatorial coordinates (e, 8) or ecliptic coordinates (A, 8) are known.
The formula is:

cosd = sin, sin &, + cos &, cos &, cos (o, — )

or
cosd = sin B, sin B, +cos B, cos B, cos (4, — 4,) ,

where d is the angle between the objects whose coordinates are ;, §; (or A, ;) and . 8, (or 4,, f3,).
These formulas are exact and mathematically correct for any values of o, & or A, . However, when d
becomes either very small, or close to 180°, your calculator may not have enough precision to return the
correct answer, in which case a better expression is

d= \/(cos5 x Aa)” + A2
or
d= \/(cosﬁ x ALY +AB2,

where Aa, A (or AA, AB) are the differences in the two coordinates (i.e. A = o, — a,, etc.). These
expressions may be used for values of d within about 10 arcmin of 0° or 180°. Both Aa (AA) and AS (Af)
must be expressed in the same units (e.g. arcseconds) and d will then be returned in those units.

For example, what is the angular distance between the stars § Orionis (o¢ = 5h13m31.7s;
6 = —8°13' 30") and o Canis Majoris (¢t = 6h44m 13.4s; & = —16° 41’ 117)?

Method Example
1. Convert both sets of coordinates to a = 5.225472 hours
decimal form (§§7 and 21). 6 = —8.225 000 degrees
o = 6.737 056 hours
6, = —16.686389 degrees
2. Find ) — a,, and convert to degrees o -0 = —1.511583 hours
by multiplying by 15 (§22). = —22.673750 degrees
3. Calculate cosd = sin §; sin 6, + cos §, cos §, cos (otl - a,_) cosd = 0.915 846
4. Take inverse cos to find d. Convert to d = 23.673 850 degrees
minutes and seconds form if required (§21). = 23° 40’ 26"

The spreadsheet, labelled Angle, is shown in Figure 34. It can use coordinates expressed either in equa-
torial or ecliptic form, specified via a switch in cell C15. Set this to H (as here) if the coordinates are o, &
(i.e. a is in Hours, minutes and seconds) or D if the coordinates are A, 8 (i.e. A is in Degrees, minutes and
seconds). The corresponding spreadsheet function is also called Angle, and it takes the same 13 arguments
as entered in the spreadsheet in cells C3 to C15, i.e. the right ascension/longitude of the first object ex-
pressed in hours/degrees, minutes, seconds, the declination/latitude of the first object expressed in degrees,
minutes and seconds, the same again for the second object, and finally the character H or D specifying the
coordinate format.
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The angle between two objects

1
2
3 i RAllong 1 (hourldeg]zl Cuitput angle (deg) 23 =DDDeg(C29)

o x

4 RA/long 1 (min) angle(min) 40 =DDMin(C29)
5 RA/long 1 (sec) 31.7 angle(sec) 25.86 =DDSec(C29)
6 dec/lat 1 (deg) -8
7 dec/lat 1 (min) 13
3 dec/lat 1 (sec) 30
8 RAflong 2 (hour/deg) 6
10 RA/long 2 (min) 44
1 RA/long 2 (sec) 13.4
12 dec/lat 2 (deq) -186
13 dec/lat 2 (min) a1
14 dec/lat 2 (sec) 11
15 Hour/degree [H or D] H

RAllong 1 (decimal)  5.225472222 =IF(C15="H" HMSDH(C3,C4,C5) DMSDD(C3,C4,C5))
RA/long 1 (deg)  78.38208333 =IF(C15="H" DHDD(C17),C17) |
RA/long 1 (rad)  1.368025429 =RADIANS(C18)
dec/lat 1 (deg) -8.225 =DMSDD({C6.C7.Ch)
dec/lat 1 (rad) -0.143553331 =RADIANS 0)
RA/long 2 (decimal)  6.737055556 =IF(C15="H" HMSDH(C2.C10.C11) DMSDD{CE.C10,811)
RA/long 2 (deg)  101.0558333 =IF(C15="H" DHDD(C22) C22)

ra
O~k WHKN =

24 RA/long 2 (rad) 1.76375702 =RADIANS(C23)

25 dec/lat 2 (deg) -16.68638889 =DMSDD(C12.C13.014)

26 10 dec/lat 2 (rad) -0.291232426 =RADIANS(C25)

27 11 cos(d) 0.915845952 =8IN{C21)*SIN{C28)+COS(C21)*COS( {(C26)"COS(C18-C24

27)

28 12 d (rad)  0.413186619 =ACOS(C
29 13 d (deg) 23.67384942 =DEGREES(C28)

Figure 34. Finding the angle between two celestial objects,

Thus you could delete rows 17 to 29 of the spreadsheet shown in Figure 34 (having saved a copy). and
insert into cells H3, H4 and H3 the following formulas:

=DDDeg(Angle(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15))
=DDMin(Angle(C3,C4,C5,C6,C7,C8,C9,C10,G11,C12,C13,C14,C15))
=DDSec(Angle(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15)).

(]
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Rising and setting

During the course of a sidereal day, the stars and other *fixed’ celestial objects appear to move in circles
about the rotation axis of the Earth, making one complete revolution in 24 hours. At the moment. there
is a star called Polaris very close to the north pole of the Earth’s axis so that stars in the northern sky
appear to revolve about Polaris. There is nothing special about this star, however, and no corresponding
object exists for the south pole. In any case, the poles are gradually changing their positions in the sky
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because of precession (see the next section) so that Polaris will no longer be the pole star in a few thousand
years.

The apparent radius of a star’s rotation depends, of course, on the angular separation, or polar distance,
between it and the pole; those stars with a small enough polar distance never dip below the horizon during
the course of their rotation. Such stars are called circumpolar. As the polar distance increases, however, a
point comes when the star just touches the horizon at some time during the day. Stars with polar distances
greater than this spend part of their time below the horizon, out of sight to the observer. When the star
crosses the horizon on the way down it is said to set and as it reappears it is said to rise.

There are several effects, including atmospheric refraction (Section 37) and parallax (for bodies relatively
close to the Earth: Sections 38 and 39), that shift an object’s apparent position and this may alter the
apparent times of rising or setting by several minutes. The situation at rising or setting is shown in Figure
35. The celestial body appears to cross the horizon at B, although its ‘true’ position, as calculated from its
uncorrected coordinates, is at A. Provided we know the vertical shift’, v, we can include its effects on the
circumstances of rising and setting.

The local sidereal times of rising and setting, and the azimuths at which they occur, can be calculated
using the formulas

cosH = — (smv+sm¢s1n6)’
cosPpcosd
LST,=0—-H,
LST,=a+H,
cosA, = sm5+smvsm¢’
cosvCcos ¢
As = 3600 _Ar,

Apparent path  True path

Figure 35. The true and apparent positions of a celestial object at rising or setting.

*v is positive if the star stays longer above the horizon.

= T2 2 W
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where the subscripts r and s correspond to rising and setting respectively, A is the azimuth, LST is the lo al
sidereal time in hours, ¢ is the right ascension, § is the declination. ¢ is the observer’s geographical latitude
and H is the hour angle. The value of cos H can be used as an indicator of whether the star never rises, or is
circumpolar. If cos H is greater than 1, the star is permanently below the horizon and never rises. If cos i
is more negative than — 1, the star is permanently above the horizon and never sets (i.c. is circumpolar).

The LST can be converted to UT and hence to the local civil time by the methods given in Sections 15,
13 and 10. Hence, all the circumstances of a star’s rising and setting can be calculated. However, there
is a difficulty that you may need to overcome if you live far away from the Greenwich meridian. In order
to convert the Greenwich sidereal time into the UT, you need to know the calendar date at Greenwich on
which the rising or setting occurs. But in order to find this from your local calendar date you need to know
the UT at which the rising or setting occurs. This difficulty is easily overcome however, If you take the date
at Greenwich to be the same as your local calendar date, the times of rising and setting will usually not be
more than a few minutes out. You can then use those times to recalculate the calendar date(s) at Greenwich
and iterate until there are no further changes.

As an example, let us calculate the UTs of rising and setting over a sea horizon of a star whose equatorial
coordinates are o = 23h 39m20s and § = 21° 42 00" on 24 August 2010, and find the corresponding az-
imuths. The geographical latitude is 30° N, and the longitude is 64° E, and the value of v due to atmospheric
refraction is 34 arcmin.

Method Example

I. Convert & and § into decimal form o = 23.655558 hours
(8§87 and 21). 4 = 21.700000 degrees

2. Find cosH = —Llnrtemgaing) cosH = ~0.242047

COS O cos O

3. IfcosH is between —1 and +1, take the inverse cos H = 6.933827 hours
to find“ H.

4. Find LST; = @ — H. Restore to the range 0 to 24 LST, = 16.721728 hours
by adding or subtracting 24.

5. Find LST, = ¢ + H. Restore to the range 0 to 24 LST, = 6.589 383 hours
by adding or subtracting 24.

6. FindA, = cos™! “—'ﬂg_;;::f;}:”—q } Restore to the range A = 64.362 348 degrees
0'to 360 by adding or subtracting 360.

7. Find Ay =360 — A,. Ay = 296.637 652 degrees

8. Convert the LST values to GST values. then to UT, = 14.271670 hours
universal times (§§15 and 13). UL, = 4.166990 hours

9. Finally, express the times as hours, minutes and seconds UT; = 14h 16m
(§8). UT, = 4h 10m

“If the star’s declination is such that it never rises above the horizon, or if it is circumpolar, then you will find that you
will be trying to take inverse cos of a number greater than 1 or less than —1. This is impossible and your calculator
should respond with ‘error’.

Note that the UTs you calculate are appropriate for the date you have applied. As here, the setting time on
a given date may be earlier than the rising time.

Figure 36 shows the spreadsheet for making this lengthy calculation. We have used several techniques
that are worthy of note. First, in rows 29 and 30, we have used the trick of adding 30s (= 0.008 333 hours)
to the UTs so that, when displayed as hours and minutes, the time will be rounded correctly to the nearest
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1_Correcting for Aberration

2
z]lnpu{ uT (hour)lj] owpnr - apparent ecl long (deg) 352 =DDDeg(C21)
4 UT (min) 0 apparent ecl long (min) 37 =DDMin(C21)
5 UT (sec) 0 apparent ecl long (sec) 30.45 =DDSec(C21)
6 G date (day) 8 apparent ecl lat {(deg) -1 =DDDeg(C22)
7 G date {(month) 9 apparent ecl lat (min) 32 =DDMin(C22)
8 G date (year) 1988 apparent ecl lat (sec) 56.33 =DDSec(C22)
9 true ecl long (deg) 352
10 true ecl long (min) 37

11 true ecl long (sec) 10.1

12 true ecl lat (deg) -1

13 true ecl lat (min) 32
14 true ecl lat (sec) 56.4

15

1B, 1 true long (deg) 352.6194722 =DMSDD(C9.C10,C11)

17 2 true lat (deg) -1.549 =DMSDD(C12,C13.C14)
18, 3 Suntruelong (deg) 165.5633044 =Sunlong(C3,C4.C5.0,0,C6,C7.C8)

19 4 diong {arcsec)  20.35217443 =-20.5'COS(RADIANS(C18-C16))/COS(RADIANS(C17))

20 5 diat (arcsec) 0.068073433 =-20.5*SIN(RADIANS(C18-C16))*SIN(RADIANS(C17))

21, 6 apparentlong (deg) 352.6251256 =C16+(C19/3600)

22, 7 apparent lat (deg) -1.548981091 =C17+(C20/3600)
-

Figure 39. Correcting ecliptic coordinates for the effects of aberration.

37 Refraction

In all our calculations so far, we have assumed that the light from distant objects reaches us by the most
direct route, a straight line. This is not actually the case (except for observations made at the zenith) as the
Earth’s atmosphere bends the light a little, making the rays reach the ground at a slightly different angle
from that which they would have had if the atmosphere had not been there (see Figure 40). This is called
atmospheric refraction and its effect is to make the star appear to be closer to the zenith than it really
is. The amount of refraction depends on the zenith angle or zenith distance (90° — altitude) and on the
atmospheric conditions, particularly the temperature and pressure. If we observe a star with zenith angle §
from the surface of the Earth, its true zenith angle, z, is given by z = § + R, where R is the refraction angle.
An approximate expression for R that is suitable for altitudes above 15° is

R =0.00452Ptanz/ (2734 T) degrees,

P s e .

HerTaamn o

where T is the temperature in degrees centigrade and P is the barometric pressure in millibars, both mea-
sured at the observation point. This formula is usually accurate to about 6 arcsec for altitudes greater than
15°. At lower altitudes, better results can be obtained using the approximate formula

_ P(0.1594+0.0196a + 0.000024%)
"~ (273+7)(1+0.505a +0.08454°)

degrees,

where a is the altitude in degrees.”

e *Strictly, a is the apparent altitude as measured through the atmosphere, rather than the true altitude as measured with no atmosphere.




Refraction

LN,y

81

[

1 %% £

Atmosphere

Figure 40. Atmospheric refraction.
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The effect of refraction on true equatorial, ecliptic and galactic coordinates is best computed by first
converting to horizon coordinates, increasing the altitude by adding R, and then converting back to the
original coordinate system to find the apparent position. We will now illustrate this by calculating the
refraction for a star whose true hour angle is 5h 51m44s and true declination +23° 13’ 10" as observed at a
geographical latitude of 52° N. The temperature is 13°C and the pressure is 1008 mbar.

Method Example

1. Calculate the true altitude and azimuth of the star (§25).

a = 19.334 345 degrees

A = 283271027 degrees

2. Find the refraction angle R from the formula appropriate 2 = 70.665655 degrees

to the altitude: @ > 157, R = 0.00452Ptanz/ (273 4+ T). R = 0.045 403 degrees

3. Add R to the altitude to find the apparent altitude «’. d = 19.379 748 degrees
4. Convert A and a’ back into equatorial coordinates (§26). H' = 5h51m 36s

6 = 2315 14/

The magnitude of R right at the horizon is usually assumed to be 34 arcmin. (Its actual value may be
different depending on atmospheric conditions.) Since its effect is to increase the apparent altitude, the
times of rising and setting will be earlier and later, respectively, than they would have been without the
atmosphere. The effective length of the day, therefore, is increased by atmospheric refraction. We can
calculate its effects on the azimuths and times of rising and setting by the method given in Section 33.
Alternatively, we can calculate the effect on the hour angle, H, at rising or setting by

34

AH = — - - minutes of time,
[5cosdcosdsinH

where AH is the amount by which the true hour angle is reduced.
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SN A B EESEE T T 3 S S N e T B J i
1 |Selenographic coordinates 2 f
> |
3 !In;-:n Greenwich date (day) 1 Ontput sub-solar longitude 6.81 =ROUND(C27,2)
4| Greenwich date (month) 5 sub-solar colongitude 83.19 =ROUND(C28,2)
5 Greenwich date (year) 1988 sub-solar latitude 1.19 =ROUND(C22.2)
6
7y 1 Julian date (days) 2447282.5 =CDJD(C3,C4.C5)
8| 2 T (centuries) -0.11670089 =(C7-2451545 ) |
9. 3 long asc node (deg)  350,7599447 =125.044522-1934 136261°C8 |
10| 4 F  -56296.83349 =93 27191+483202.0175°C8 |
1| 5 F  223.1665139 =C10-360"INT(C10/360)
12| 6 Sun geocentric long (deg)  40.84263343 =SunlLong(0,0.0,0,0,C3,C4.C5)
13 7 Moon equ hor parallax (arc min)  55.95238522 =MoonHP(0,0,0,0,0.C3,C4,C5)"60
14 8 Sun-Earth dist (AU) 1.00760326 =5unDist(0,0.0,0,0.C3,C4.C5)
|15, 9 geocentric Moon lat (rad) -0.053838535 =RADIANS(Mconlat(0.0,0,0,0,C3,C4,C5))
16 10 geocentric Moon long (deg)  209.1175282 =MoonLong(0,0.0.0,0.C3,C4.C5)
17| 11 adjusted Moon long (deg)  220.7476113 =C12+180+(26 4°COS(C15)“SIN(RADIANS(C12-C16))/(C13°C14))
18 12 adjusted Moon lat (rad) -0.000140054 =0 14886°C15/(C13'C14)
19| 13 inclination (rad)  0.026920249 =RADIANS(DMSdd(1,32,32.7))
20| 14 node-long (rad)  2.269143285 =RADIANS(CS-C17)
21| 15 sin(bs) 0.020755895 =-COS(C19)*SIN(C18)+SIN(C19)*COS(C18)*SIN(C20)
22| 16 sub-solar lat (deg)  1.189310602 =DEGREES(ASIN(C21)) |
23| 17 A (rad) -2.269324173 =ATAN2(COS(C18)*COS(C20),-SIN(C18)"SIN(C19)-COS(C18)*COS(C18)*SIN(C20)) |
24 18 A (deg) -130.0226975 =DEGREES(C23)
125, 19 sub-solar long (deg) -353.1892113 =C24-C11
26 20 sub-solar long (deg)  6.810788676 =C25-360°INT(C25/360)
27, 21 sub-solar long (deg)  6.810788676 =IF(C26>180,C26-360,C26)
28 22 sub-solar colong (deg)  £3.18921132 =50.C27

Figure 51. Calculating the selenographic coordinates of the Sun.

Atmospheric extinction

The light that reaches us on the surface of the Earth from heavenly bodies first has to pass through the at-
mosphere where some of it is scattered by dust, electrons, oxygen and nitrogen molecules, and other sundry
particles. The amount of this Rayleigh scattering depends on the physical conditions in the atmosphere (it
will be enhanced, for example, by extra dust from a volcanic eruption) and on the wavelength of the light.
In general, the shorter wavelengths (blue) are scattered much more than the longer wavelengths (red); for
this reason, the sky looks blue (we see the scattered light) and the apparent colour of a star observed from
the Earth’s surface is reddened. If we take the visual wavelengths as a whole, we can make a rough estimate
of the amount of absorption to expect when the atmosphere is clear, from

5

Am =

magnitudes,
cosz

where Am is the quantity to be added to the magnitude, and z is the zenith angle (z = 90° — altitude). For
example, a planet whose altitude is 15° may appear dimmer by about 0.8 magnitudes in good conditions
when the atmosphere is clear; in general this will be an underestimate since there are additional causes of
absorption. The formula breaks down for zenith angles greater than about 85°.
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Finding the Position of the Sun (more precise method)

1
3 |tnput local civil time (hour) 0 oupre - Sun RA (hour) 8 =DHHour(C17)
4

@
b e
[

local civil time (min) 0 Sun RA (min) 26 =DHMin(C17)
5 local civil time (sec) 0 Sun RA (sec) 3.83 =DHSec(C17)
8 local date (day) 27 Sun dec (deg) 19 =DDDeg(C18)
| 7 local date (month) 7 Sun dec (min) 12 =DDMin(C18)
8 local date (year) 1988 Sun dec (sec)  49.72 =DDSec(C18)
| 9 daylight saving 0
10 zone correction 0
11
12 1 Gyear 27 =LctGDay(C3,C4.C5,09,C10.C6,C7,C8)
|13, 2 Gmoeonth 7 =LctGMonth(C3,C4,C5.9.C10,C6,C7,C8)
{14 3 Gyear 1988 =LctGYear(C3,C4,C5.C9,C10.C6,C7,C8)
115 4 Sun's ecliptic longitude (deg)  124.1873516 =SunlLong(C3,C4,C5.C2.C10,C6,C7,C8)
116 5 RA (deq) 126.515956 =ECRA(C15.0,0,0.0,0,C12,C13,C14)
|17 B RA (hours)  8.434397066 =DDDH(C16)
|18 7 dec (deg)  19.21381243 =ECDec(C15,0,00,0.0,C12,C13.C14)

Figure 56. Finding the position of the Sun by a more precise method.

Calculating the Sun’s distance and angular size

Having found the true anomaly, v, by the method of Sections 46 or 47, we can easily calculate the Sun-Earth
distance. r, and the Sun’s angular size (i.e. its angular diameter), 6. The formulas are:

1—¢?
r=ry,| — |,
O\ [ +ecosv

1 +ecosv
omgy(LEem)

where r, is the semi-major axis, 6, is the angular diameter when r = 1. and e is the eccentricity of the
orbit. These constants are given in Table 7. Continuing the example of Section 47 we can find r and 6 for
the Sun on Greenwich date 27 July 1988 at 0h UT.

Method Example

1. Find the true anomaly, v (§§46 0r47). v = 201.443 110 degrees
2. Find f = DHC%Y (See Table 7 fore) f = 0.984726

3. Thenr= 2. (See Table 7 for ry.) ro= 1.519189 x 10% km

4. And 8 = f8,. (See Table 7 for 8;.) 8 = 0° 31’ 30"

The Astronomical Almanac gives 6 = 0° 31" 30" and, in general, we should be within a few arcseconds
of the correct value. It is interesting to note that the Sun’s light took r/c seconds to reach us, where

¢ =3 % 10° kms~". In this case the light travel time was 506 seconds, during which interval the Sun moved
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(tropical years) (degrees) (degrees) (AU) (degrees) (degrees) (arcsec)
Mercury 0.24085 75.5671 77.612 0.205627 0.387098 7.0051 48.449 6.74 —0.42
Venus 0.615207 272.30044 131.54 0.006812 0.723329 3.3947 76.769 16.92 —4.40
Earth 0.999996 99.556772 103.2055 0.016671 0.999985
Mars 1.880765 109.09646 336.217 0.093 348 1.523689 1.8497 49.632 9.36 1.52
Jupiter 11.857911 337.917132 14.663 3 0.048907 5.20278 1.3035 100.595 196.74 -9.40
Saturn 29.310579 172.398316 89.567 0.053853 951134 2.4873 113.752 165.60 —8.88
Uranus 84.039492 271.063 148 172.884 833 0.046321 19.218 14 0.773059 73.926961 65.80 -7.19
Neptune 165.84539 326.895127 23.07 0.010483 30.1985 1.7673 131.879 62.20 -6.87

I AU = 149.6 % 10° km.
Ty: period of orbit; &: longitude at the epoch; @: longitude of the perihelion: e: eccentricity of the orbit; a: semi-major axis of the orbit; i: orbital inclination;
§¢: longitude of the ascending node: 6,: angular diameter at 1 AU; V,;: visual magnitude at 1 AU.

Table 8. Elements of the planetary orbits at epoch 2010.0.
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Comet name (degrees) (degrees) ()I;curs) (AU) (degrees)
Encke 1974.32 160.1 334.2 3.30 2.209 0.847 12.0
Temple 2 1972.87 310.2 119.3 5.26 3.024 0.549 12:5
Haneda-Campos 1978.77 12.016 131.700 5.37 3.066 0.64152 5.805
Schwassmann-Wachmann 2 1974.70 123.3 126.0 6.51 3.489 0.386 3.7
Borrelly 1974.36 67.8 75.1 6.76 3.576 0.632 30.2
Whipple 1970.77 18.2 188.4 7.47 3.821 0.351 10.2
Oterma 1958.44 150.0 1:55.1 7.88 3.958 0.144 4.0
Schaumasse 1960.29 138.1 86.2 8.18 4.054 0.705 12.0
Comas Sola 1969.83 102.9 62.8 8.55 4,182 0.577 13.4
Schwassmann-Wachmann 1 1974.12 334.1 319.6 15.03 6.087 0.105 9.7
Neujmin | 1966.94 334.0 347.2 17.93 6.858 0.775 15.0
Crommelin 1956.82 86.4 250.4 27.89 9.173 0.919 28.9
Olbers 1956.46 150.0 85.4 69.47 16.843 0.930 44.6
Pons—Brooks 1954.39 94.2 255.2 70.98 17.200 0.955 74.2
Halley 1986.112 170.0110 58.1540 76.008 1 17.9435 0.9673 162.2384

P: epoch of the perihelion; @: longitude of the perihelion; §7: longitude of the ascending node: 7),: period of the orbit; a: semi-major axis of the orbit:
e: eccentricity of the orbit; #: inclination of the orbit. ’

Table 9. The orbital elements of some periodic comets.
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