The planets, comets
and binary stars

An observer looking up at the night sky from the
surface of the Earth sees an unchanging pattern
of stars revolving slowly about the pole as the
Earth spins on its axis. So great are the
distances to the stars that the changing position
of the Earth as it travels along its orbit around
the Sun causes hardly any movement in the
pattern, even in the course of six months. There
are a few objects, however, which do appear to
move a great deal with respect to this fixed
background of stars. The objects are members
of our Solar System, the planets, the asteroids
and the comets. Eight major planets have been
identified so far which, in order of increasing
distance from the Sun, are Mercury, Venus,
Earth, Mars, Jupiter, Saturn, Uranus, and
Neptune. (Pluto was originally classified as a
planet, but is now considered the largest
member of another grouping of objects called
the Kuiper belt.) These, together with other
members of the Solar System, are all bound by
the gravitational field of the Sun so that instead
of moving off into space in different directions
they are constrained to follow elliptical orbits
about it. Their apparent motions in the sky are
complicated because they are relatively close to
us so that the position of the Earth in its own
orbit needs to be taken into account. The next
few sections contain methods for calculating the
positions, angular sizes, distances, phases and
brightnesses of the major planets. There are
also sections describing how to calculate the
orbit of a comet and the orbit of a binary star.
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i 120 The planets, comets and binary stars

H ‘ 53 The planetary orbits

A Each planet in our Solar System describes an elliptical orbit about the Sun with the Sun at a focus of the
et ellipse. We discovered how to calculate the Sun—Earth orbit in Sections 44 to 47. This was a particularly
simple case since the plane of the orbit defined the plane of the ecliptic; the ecliptic latitude was therefore
always zero and the fundamental direction, the first point of Aries, was in the orbital plane. The other
planets, however, do not move in the plane of the ecliptic but describe orbits inclined at small angles to it.
Figure 63 shows the situation.
The Sun, S, is at the centre of the diagram and you are to imagine that you are looking at the path of
a planet around the Sun from a great distance. The orbit of the planet is the small shaded ellipse N, AP.
The perihelion is marked A and the planet’s present position is marked P. That part of the orbit which lies
1 above the ecliptic is shown with solid lines, while that lying below it is shown with dashed lines. The large
sphere is centred on the Sun and the plane of the planet’s orbit is projected to cut the sphere along the circle
N/ A’P'N%. Here A’ is the projection of A onto the sphere, P’ the projection of P and so forth. Also shown in
i the diagram is the plane of the ecliptic YN} N5, which contains the direction of “V’, the first point of Aries.
The planet moves along its orbit in the direction of the arrow. The point N, where it rises out of the plane
i of the ecliptic is called the ascending node. N,, the point where it descends below the plane of the ecliptic,
: is called the descending node. Angles in the orbital plane are measured from the ascending node while
longitudes are reckoned from the direction I° which is not in the orbital plane. Thus the perihelion is at an
angle @ to the node (the ‘argument’ of the perihelion) and the present position of the planet is at an angle
® + v. The corresponding longitudes are @ + £ and @ + v + §2, where § is the longitude of the ascending
node. Note that longitudes are the sum of two angles in different planes.

I

Planet’s orbital plane

Plane of the ecliptic

Figure 63. Defining the orbit of a planet.
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Calculating the coordinates of a planet
Our calculation will proceed in three steps. The first is to calculate the position of the planet in its own
orbital plane exactly as we did for the Sun—Earth orbit in Section 46. In the second step we will project the
planet’s calculated position onto the plane of the ecliptic and hence find its ecliptic longitude and latitude
referred to the Sun (heliocentric coordinates). The third step will involve transforming from the Sun to the
Earth to find the ecliptic coordinates referred to the Earth, from which we can find the right ascension and
declination by the method given in Section 27.

As before, we choose our starting point, the epoch, as 2010.0. Having calculated the number of days, D,
since the epoch, we find the mean anomaly, M, by the formula

360 D

M= T S T
365.242191 T

+ € — @ degrees,

where 7}, is the orbital period of the planet in tropical years, £ is the mean longitude of the planet at the
epoch, and @ is the longitude of the perihelion. These constants are listed for the planets in our Solar
System in Table 8. This table is extracted from a list of osculating elements published on the web by the
US Naval Observatory (see page 209),

Being osculating elements, they change with time and are valid only over a relatively short period. We
can use the values in Table 8 for low-precision calculations, but should use the more-precise spreadsheet of
Section 56 for extrapolations into the past or future of more than a few tens of years from 2010, or where
higher accuracy is needed.

The mean anomaly refers to the motion of a fictitious planet, P, moving in a circle at constant speed
with the same orbital period as the real planet (see Figure 64). We really want to know the value of the true
anomaly, v, which is the angle the real planet actually makes with the line joining the Sun to the perihelion.
We can find v from M using the equation of the centre:

360 |
vV =M+ —esinM degrees,
T

where ¢ is the eccentricity of the orbit (Table 8) and 7 = 3.1415927. Once again, this formula is an
approximation that is good enough for most purposes; if you wish to make more precise calculations you
can find the value of v by solving Kepler's equation via the method of Section 47.
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A Perihelion

Figure 64. Mean and true anomalies.
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124 The planets, comets and binary stars
The next step is to calculate the heliocentric longitude, /. and this is simply given by
[=v+ O,

or

! 360 DY 360 0 DNy
= —————— x — |+ —esin| === X — + €~ @ ) + & degrees.
65202101 1) T x \Gesamion (T, T B aRmReS

We also need the length of the radius vector, r, calculated from

a(l—é?)
r=——
| +ecosv
where a is the semi-major axis of the orbit (Table 8).

The above calculations which you have made for the planet have to be repeated for the Earth as well. We
shall denote the values derived for the planet by small letters and use capital letters for the Earth’s values.
Thus, we arrive at the figures for { and r for the planet and L and R for the Earth. In addition, we need the
heliocentric latitude of the planet:

y =sin~ ! {sin(/ - §)sini}.

where i is the inclination of the orbit and 7 is the longitude of the ascending node (Table 8). The heliocentric
Jatitude of the Earth is, of course, zero.

Now we need to project our calculations for the planet onto the plane of the ecliptic to find the projected
heliocentric longitude, (', and the projected radius vector, . These are given by the formulas

I' = tan~! {tan ({ — §2)cosi} + §2,

J', = rcos .

The final step in the process is to refer the calculations to the Earth to find the geocentric ecliptic latitude,
B. and longitude, 2, of the planet. Figure 65(a) describes the situation for an outer planet, whose orbit
lies outside that of the Earth (i.e. Mars, Jupiter, Saturn, Uranus and Neptune). and Figure 65(b) is for an
inner planet (the inner planets are Mercury and Venus). The plane of the paper represents the plane of the
ecliptic. S is the Sun, E is the Earth and P, is the position of the planet projected onto the ecliptic. The first
point of Aries is taken to be at a distance from the Solar System so large that the directions ET and ST° are
parallel. Then by application of a little simple geometry we have for the outer planets
5 !
A =tan ' {M} + 1" degrees,
' —Rcos(I' = L)

and for the inner planets

(= /
_ r'sin(L—1)
A =180+L+tan™' § ———————= 1 degrees,
R—1r'cos(L—1)
Figure 66 gives the diagram for calculating the latitude. Again, using simple geometry we find

P tanysin (A —1')
f =tan : { Rsin(l'—L) degrees,

true for inner and outer planets alike.
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(a)

(b)

Figure 65. Ecliptic geometry: (a) outer planet, () inner planet.

Figure 66. Projecting onto the ecliptic.
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|
y Let us consolidate these rather lengthy calculations with two examples, one for an outer planet, Jupiter,
“f and the other for an inner planet. Mercury. For each of these two planets we shall calculate its right ascension
A and declination on 22 November 2003. For Jupiter (outer planet):
Method Example
o 1. Find the number of days since 2010 22 November = 304+ 22
i January 0.0 (§3). The total is D. = 326
! 2557
‘ B = 2231 days
For the planer, Jupiter:
o) Ml taraing oo . 360 . ) AT _ s55 017 decrees
2. Caleulate Ny = 555557071 X 1 N, = 174.555932 degrees
Add or subtract multiples of 360 to
bring the result into the range 0 to 360.
3. FindM, =N, +¢&-0. My, = 497809764 degrees

"(a()

4, Calculate Vp = My +
Add or subtract rnulupks of 360 to
bring the result into the range 0 to 360.

5.  Find Ip = Vp + 0. lhy = 156.236900 degrees
Add or subtract multiples of 360 to
bring the result into the range 0 to 360.

esin M), degrees. vp = 141.573600 degrees

6. Calculate r = 1) Fo= 5397121 AU
Now do the calculations for the Earth:

7. Caleulate Ny = wsa51o1 X 1 Ng = 321.011952 degrees
Add or subtract multiples of 360 to
bring the result imu the range 0 to 360.

8.  Find -'.I ;‘\’I_- — 0. ME{ = 317.363223 degrees

9. .1I«.u|.ug VE = M + ~:‘,9¢'l sin M. v = 316.069248 degrees
Add or subtract mulupiu of 360 ln
bring the result into the range 0 to 360,

10, Find L = v + O. L = 59.274 748 degree

Add or \uhlmu multiples of 360 to
bring the result into the range 0 to 360,

1. Calculate R = ag(1-ct) R = 0.987847 AU

I+ cos v
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Method (continued) Example

More calculations for the planet:

12, Caleulate y = sin ' {sin (lp— §2) sini}. voo= 1.076 044 degrees

13. Find y = sin (I, — §2) cosi. y = 0.825313

14, Find x = cos (- 8). X o= 0.564 363

[5. Findtan~! (%) and remove the ambiguity an ' (Y) = 55.63499]
by referring to Figure 29, adding or subtracting v and x both positive so the
180 degrees as indicated by the signs of x and v result is in the right quadrant
so that the result lies in the correct quadrant.

16.  Add ) toget! I = 156.229991 degrees
(check: I’ should be nearly equal to Ip).

I7. Find ' = rcosy. #oo= 5.396 170 AU
Combine the caleulations:

I18.  Calculate A = tan ! { = 1\';\%:“{_!{_17} -+, A= 166.310510 degrees

Bring the result into the range 0 to 360 by adding
or subtracting 360. This is the planet’s geocentric
ecliptic longitude.

7 = tan—! { tanwsin(A-1") = 3 g

19. Find B =tan {_'T\‘\m.i T } B = 1.036 466 degrees
This is the planet’s geocentric ecliptic latitude,

20, Finally, convert 2 and f3 to right a« = 1lh1lml14s

: st . ! ezl
ascension and declination (§27). é = 6° 21" 25
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The Astronomical Almanac gives the apparent coordinates of Jupiter for this day as o = 11h 10m 30s and
0 = 6° 23" 56”. The error due to our approximation in counting only the first term of the equation of the
centre could be reduced by solving Kepler’s equation using the method in Section 47. We will see how to
make more exact calculations in Section 56. For Mercury (inner planet):

Method Example
. We proceed exactly as we did in the previous Ip = 288.012253 degrees
example, calculating Ly, vp. r, y. {" and ' vp = 210.400253 degrees
for Mercury, and L, vi; and R for the Earth. poi= 0.450657 AU
w = —6.035842 degrees
I = 287.824406 degrees
k= 0.448 159 degrees
L = 59.274 748 degrees
vg = 316.069 248 degrees
R = 0.987 847 AU
2. Now caleulate 4 = 180+ L+tan ' { ZZME b 3 = 253.929758 degrees
Add or subtract multiples of 360 to bring
the result into the range 0 to 360.
; Y tan yrsin( A —1') -
Find = tan~! { %‘—“ } B = —2.044057 degrees
4. Finally, convert A and P to right ascension o = 16h 49m 12s
and declination (§27). 8 = =24°30" 09"

The Astronomical Almanac gives the apparent coordinates of planet Mercury as o = 16h52m 02s and § =
—24° 38’ 41", We should generally expect an error in ¢ of a few minutes at most and in & of a quarter of
a degree, but the errors may be more for Mercury, for which ¢ = 0.2. The inaccuracies arise because we
have used only the first term in the equation of the centre, we have not allowed for the light travel time, and
because of the slight perturbations to the orbits from other planets in the Solar System (see Section 56). We
could reduce the error from the first cause by using the longer method of Section 47; see Figure 68 for a
graph of the error incurred by the shorter method.

The spreadsheet for this calculation, called PlanetPos1, Figure 67 (three panels), uses a technique which
we have not met previously in this book. The parameters of the orbits of the planets are presented in a table
in a separate spreadsheet called Planet data (third panel). This table reproduces most of the data in Table 8.
but note that the order of the planets is now alphabetical. The planet name is in column A and is used as
the key to the corresponding row of data contained in columns C to [ inclusive. If we number the columns
in the table, then column | contains the planet name, 3 contains the orbital period, 4 the longitude at the
epoch and so on. We can obtain any element of the data using the spreadsheet function VLOOKUP (e.g. row
17 of the first panel of Figure 67). This takes four arguments, which are the planet name (upper or lower
case, or a mixture), the range of the table from top-left-hand corner to bottom-right-hand corner
(e.g. 'Planet data'!A3:110), the column number containing the required element (e.g. 3 for the orbital period,
4 for the longitude at the epoch), and a switch which is set to TRUE to find either an approximate or an
exact match with the planet name in column 1, or FALSE if an exact match is required (as here). Using this
formula makes it casy to change the orbital parameters without affecting the main spreadsheet calculation.
Simply fill in the Planet data table with new numbers, and the spreadsheet will use those instead. The
formulas contained in cells G3 to G8 are shown in cells G10 to G15 to save space.
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Zlme 2 ve Fumat Took Dats Widow Hek - al X
Erys B eeeceeeSnEl F 6 T A’ [ 1T 13T ¥ 71t
1 The positions of the planets (approximate method)
| 2
‘_3_] : local civil time (hour) 0| Jupiter RA (hour) 11 =DHHoun Ce1)
| 4 local civil time (min) 0 Jupiter RA (min}) 11 =DHMin(CE1)

I 5 local civil time (sec) 0 Jupiter RA (sec)  13.8 =DHSec(C61) ‘
[ 6 daylight saving (hours) 0 Jupiter dec (deg) 6 =DDDeg(CH2) ‘
| 7 zone correction (hours) 0 Jupiter dec {min) 21 =DDMin(C82)
| 5 local date (day) 22 Jupiter dec (sec)  25.1 =DDSeciCE2)
| o local date (month) 11
10| local date (year) 2003 =CONCATENATE(SCS11," RA (hour)")
[ 11 planet name Jupiter =CONCATENATE(SCS11." RA (min)")
| 12| =CONCATEMATE(SCS11," RA (sec)") |
[13 =COMNCATENATE(SCS11," dac (deg)") [
14 =CONCATENATE(SC$11." dec (min)") I
15 =CONCATENATE(SCS11." dec (sec)”)
[ 18
! 17| 1 planet Tp from table 11.857911 =VLOOKUP(C 11, Planet dataA3:110 3.FALSE)
{18 2 planet long from table  337.917132 =vLOOKUP(C11,Planet data!A3110.4 FALSE)
1 18| 3 planet peri from table 14,6533 =VLOOKUP(C 11, Planet data'lA3110.5.FALSE)
20| 4 planst ecc from table 0.048307 =VLOOKUP(C11, Planet dataA3:110.6.FALSE)
{21] 5 planet axis from table 5.20278 =VLOOKUP(C11,'Planet dala'lA3:110,7,FALSE)
(22| B planst incl from table 1.3035 =VLOOKUP(C11, Planet datalA3:110 8, FALSE)
{23 7 planet node from table 100.595 =VLOOKUP(C 11, Planet data'lA3:110,9,FALSE)
24| 8 Gdate (day) 22 =LctGDay(C3,C4,C5.C6.C7,C8.C5.C10)
‘25' 9 Gdate (month) 11 =LetGMonth(C:3 C4,C5,06.C7,08,09.C10) 5

26 10 Gdate (year) 2003 =LetGYear(C3,C4,C5,C6.C7.C8.C6.C10) [
‘:7 1 UT {hours) =LctUT(C3,C4,C5,C6,.C7.C6.C9.C10)

{28| 12 D (days) =CDJD{C24+(C27/24), FCDJD(0.1,2010)

{29] 13 Np (deg) -1854440579 =360"C28/(365.242191°C17) |
{10! 14 Np(deg) 1745559321 =C29-360°INTIC29/380) ’
a1, 15 Mp (deg) 497 8097641 =C30+C18-C19

32| 16 L p (deg) 516.2369 =C30+(360°C20"SIN(RADIANS(C311)/PI()+C18
Mo e W\ PlaetPo] { Paret cats /

Figure 67. Finding the position of a planet by an approximate method; panels one and two show the main spreadsheet,
and the third shows the data table (continued on the next page). The formulas contained in cells G3 to G8 are shown in
cells G10 to G15 to save space.
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. i‘- d)rie g= yem lwe Fomat Tok Dota Wi Heb 8 x
f [ TA B c DE F G H [ J K L
H (52| 17 Lp (deg) 5
'2; {34 18 planet trus anomaly (deg)
; 3| 19 r {AU) OSIRADIANS(C34)))
5 l3s 20 Earth Tp from table OOKUP{“Eanth”,Planet datal23:110.3.FALSE!
t:_ {37 21 Earth long from table 69.556772 =vLOOKUP("Earth" 'Planet data'lA3:110.4. FALSE)
| |3 22 Earth peri from table 103.2055 =VLOOKUP("Eartii", Planet data'1A3:110.5,FALSE!
g 3g| 23 Earth =cc from table 0 016671 =VLOOKUP("Earth" 'Planet data’lA31110.6. FALSE)
f»: | 40 24 Earth axis from table 0.999985 =VL.OOKUP('Earh" 'Planet data'lA3:110.7. FALSE)
£ 41| 25 Nea (deg) -2198 988048 =360°C26/(365.242181'C36)
g 42| 26 Ne(deg) 3210119519 =C41-360"INT(C41/360)
i‘: 43| 27 Me (deg) 317.3632239 =C42+C37-C38
: ! 44| 28 Le{deg) 419.2747478 =042+C37+3607C39"SIN(RADIANSIC43))/P )
3 | 45| 29 Le(deg) 59.27474763 =C44-360°INT(C44/3E0)
¥ |48 30 Earthtrus anomaly (deg) -43.93075237 =C45-C38
; {a7] 31 R (AU) 0987846852 =C40°(1-(C33)°2)1+C38°COSIRADIANSICAGH)
i |48| 32 (L o-Node) (rad) 0971134357 =RADIANS(C33-C23)
| 43 33 psi(rad) 0.0187805313 =ASIN(SIN(C421*SIN(RADIANS(C2211)
{50| 34 y  0.825312806 =SIN(C48)"COS(RADIANS(C22))
{s1] 35 x 0564363453 =COS(C48)
f 52| 35 (d (deg)
| 53| 37 rd (AU)
|54 38 Le-Ld (rad) 8223 =RADIANS(C45-C52)
55| 39 ATANZ type 1 66183 =ATANZ(C47-C53°COSICH4)
|58 40 ATAN2 type 2 3-C47°COS(C54}5.C47°SIN(-C54))
57| 41 A (rad)
|58 42 lamda (d=g) 166 31051 =IF(C53-1,180+C45+DEGREES(C57) DEGREES(CS7+C52)
|sa 43 lamda (deg) 166.31051 =C58-360"INT(C58/360)
i 6o 44 beta (deg) 1036485536 —NEGREESIATAN(C53 TAN(CAS)"SIN(RADIANS(C53-C52)/(C4T“SIN-CE4))
| 61 | 45 RA (hours) 11.1871665 =DDDH(ECRA(C59,0.0,C60.0.0,C24.C25.C26)
{ 62| 46 dec (deg) 6356972089 =ECDec(C59,0.0.060 0,0.C24.C25,C26)
[« » i '\PlanetPosl § Panat dala /
j A B c D E F G H |
. 1 Planet name Tp Long Peri Ecc Axis Incl Node
| 2
I3 EARTH 0999995 99.556772  103.2055 0.01667 0.99999
4 JUPITER 11.85791 337.91713 14.6633 0.04891 5.20278 1.3035 100.595
5 MARS 1.880765 109.09646 336217 0.09335 1.52369  1.8497 49.632
| 6 MERCURY 0.24085 75.5671 77.612 020563 0.3871 7.0051 48.449
| 7 NEPTUNE 165.8454 326.89513 2307 0.01048 30.1985 1.7673 131.879
| 8 SATURN 2931058 172.39832 80567 005385 951134 2 4873 113.752
| 9 URANUS 84.03949 271.06315 172.88483 0.04632 19.2181 0.77306 73.926961
{10 VENUS 0.615207 272.30044 13154 0.00681 0.72333 3.3947 76.769

Figure 67. (Continued.)
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Finding the approximate positions of the planets
The method of finding the equatorial coordinates of the planets given in the previous section is quite accu-
rate but involves lengthy calculations. An amateur astronomer often only wants to know the approximate
position of a planet so that he or she knows where to look for it in the sky, and does not want to have to
spend 20 minutes beforehand submerged in a sea of figures obtaining the information. In that case it is
usually sufficient to assume that the planets describe circular orbits about the Sun which all lie in the plane
of the ecliptic. This leads to considerable simplifications in the calculations.
The heliocentric longitude, /, does not have 1o be corrected by the equation of the centre so that we may
write
360 D o
= 365242191 }p + € degrees.
We repeat this calculation for the Earth as before (giving L). Since the orbits are assumed to be cireular
with the Sun at the centre, the radius vector is constant. Hence

r=ida.

The heliocentric (and therefore the geocentric) latitude of the planet is zero since we have assumed that the
orbit lies in the ecliptic plane. Our final calculation is therefore

P Y— 7sin(_l —1',,)___ ‘ .
o a—cos(/—L) ' L ' g

for the outer planets and

T

flia

(
p

N

A =180+ L+ tan"! {-—”{“m(L” } CT nINe )

| —acos(L—1) B

for the inner planets, since we have assumed that R — | (the Earth’s orbital radius is taken to be unity). This
is the geocentric longitude of the planet from which the right ascension and declination can be found using
the formulas of Section 27 (remember B =0):

o = tan” ' {tan A cos £},

8 =sin~' {sinAsine}.
where € here is the obliquity of the ecliptic (about 23.5 degrees; see Section 27). In some cases it may even
be possible to ignore the fact that the plane of the ecliptic is inclined at an angle to the plane of the equator
and to write

o =A.

As an example, we will calculate again the coordinates of Jupiter on 22 November 2003 using this approx-

imate method.



The planets, comets and binary stars

LN A l,s‘,\/r':.-)_ﬂ!.‘hu']z&aq
o5}
(£

Method Example
1. Find the number of days since 2010 January 0.0 22 November = 304+ 22
4 (§3). The total is D. = 326
i ~ 2557
] D = —=2231days
2. Calculate [ = (Rhig%ﬁ X ili +E£. I = 152.47 degrees
Add or subtract multiples of 360 to bring the
result into the range 0 to 360.
3. Repeat step 2 for the Earth to find L. L = 60.57 degrees
‘ 4. Calculate A = tan™! {(Th'li-ltii:l%]'} + 1. Bring the A = 163.28 degrees
result into the range 0-360 by adding or subtracting
360. This is the planet’s geocentric ecliptic longitude.
: 5. Finally, convert A and 3 (= 0) to right o = 10h58m
| ascension and declination (§27). 5§ = 63

56 Perturbations in a planet’s orbit

Throughout the calculations to find the coordinates of a planet (Section 54), we assumed that its motion
was controlled entirely by the gravitational field of the Sun so that the influences of other members of the
Solar System were negligible. This is true to quite a high accuracy, but for more precision we need to take
account of these perturbations, especially for the orbits of Jupiter and Saturn where the effects can be as
large as 1 degree in longitude. The usual method of doing so is to apply a series of correction terms to the
quantities calculated in Section 54. We have to make similar adjustments for the Moon in Section 65. Here,
we shall consider only the most important terms in the orbits of Jupiter and Saturn where the corrections
amount to more than about 0.04 degrees in longitude.

We must first calculate the time, 7, in Julian centuries since the epoch 1900 January 0.5. This is given by

. JD—24150200
- 36525 '

where JD is the Julian date (Section 4)." Then we calculate the quantities:

P =237.47555+3034.906 1 T degrees,
0 = 265.91650+ 1222.11397 degrees,
V =50 —2P, and

Bl

“Note that this definition of T differs from that used in other parts of the book.
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The principal terms for Jupiter and Saturn are then:

Jupiter: Al = (0.3314 — 0.01034)sinV — 0.0644A cos V degrees.
Saturn: Al = (0.16094 — 0. 0105)cosV 4 (0.01824 —0.8142)sinV — 0.1488sinB

-0.04085sin2B8 +0.0856sin Beos @ + 0.081 3 cos Bsin QO degree

The value of A/ must be added to the mean longitude / before proceeding with the calculation of Section 54.
Let us now recalculate the position of Jupiter on 22 November 2003, solving Kepler's equation properly
(Section 47) and allowing for these pr incipal terms of perturbation.

Method Example
1. Calculate the Julian date (§4). ID = 2452965.5 days
2. Find 7 = 12=34130200 T = 1.038 891 centuries
3. FindA=(L)+o.1. A = 0.307 778 centuries
4. Calculate P = 237747555 + 303479061 7. P = 3390412 183 degrees
5. Find 0 =265791650+1222°11397T. O = 1535559632 degrees
6. FindV =50 -2p. Vo = 896.973 792 degrees
7. Calculate A/ = (0.3314 - 0.0103A)sinV — 0.06444 cosV. Al = 0.037 121 degrees
8. Now proceed as in the example of §34 to find M. M, = 497.809 764 degrees
9. Use the method of §47 to find Vp. E, = 2.436915 radians
Vp = 141.407 886 degrees
10.  Find 4',, = Vp +@. Add or subtracl multiples of ."ij — 156.071 186 degrees
360 to bring the result into the range 0 to 360,
. Add Al to get a better estimate of lp- h = 156.108 307 degrees
12 Calculate L. vi; and R for the E drth Eg = 5.527 600 radians

= 316.049 185 degrees
= 59.254 685 degrees
= 0.987 847 AU
= 5.396627 AU
= 0.018 751 degrees

also using the method of §47. Vi
L

R

7

W

o= 156.101 386 degrees
’f

A

B

o

o

3. Now proceed with the calculations
of §54 to find & and 6.

= 5.395678 AU

= 166.188 415 degrees
= 1.035 198 degrees
= 11h10m47s

= 6°24 12"

The error incurred in considering only the first term of the equation of the centre is plotted as a function
of the mean anomaly, M. in Figure 68 for two values of the eccentricity, e.

The spreadsheet for finding the positions of the planets by a more precise method is called PlanetPos2
and is shown in Figure 69. We have used a full numerical model of the orbits of the planets in the two
spreadsheet functions PlanetLong and PlanetLat which return, respectiv cly, the named planet’s ecliptic lon-
gitude and latitude in degrees. These functions appear in rows 20 and 21. They each take nine arguments,
namely the local civil time expressed as hours, minutes, and seconds. the daylight saving correction and
zone time offset in hours, the local calendar date expressed as day, month, year, and the full name of the
planet as a string in upper or lower case. The example shown is for Jupiter on the 22 November 2003, and
you can see that this method has provided the position correct within about 1 second in right ascension, and
within a few arcseconds in declination. The formulas in cells G3 to G8 are shown in cells HI10 to H15 to

save space.
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Figure 68. The error, A, incurred by taking v = M + (360/m) esin M as an approximation to elliptical motion. The true
anomaly should be v — A.
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Ute 0r e peel rone D Lae wam = )
A B C D E F G H I J
1 The positions of the planets (more precise method)

local civil time (hour) 0 wyne - Jupiter RA (hour) 11 =DHHour(C22)

| |r

local civil time (min) 0 Jupiter RA (min) 10 =DHMin(C22)
s local civil time (sec) 0 Jupiter RA (sec) 30.99 =DDSec(C22)
daylight saving (hours) 0 Jupiter dec (deg) 6 =DDDeg(C23)
7 zone correction (hours) 0 Jupiter dec (min) 25 =DDMin(C23)
8 local date (day) 22 Jupiter dec (sec) 49.46 =DDSec(C23)
g local date (month) 11
10 local date (year) 2003 =CONCATENATE($CS$11," RA (hour)")
1 planet name Jupiter =CONCATENATE(SCS$11," RA (min)")
12 =CONCATENATE(SCS$11," RA (sec)")
13 =CONCATENATE(SC$11," dec (deg)")
14 =CONCATENATE($C$11," dec (min)")
15 . =CONCATENATE(3CS$11," dec (sec)")
16

Greenwich date (day) 22 =LctGDay(C3.C4.C5,C6.C7.C8.C9.C10)

Greenwich date (month) 11 =LetGMonth(C3,C4,C5,C6,C7.C8,C9,C10)
Greenwich date (year) 2003 =LctGYear(C3,C4.C5.C6,C7,C8.C9,C10)
planet ecl long (deg) 166.1186259 =PlanetlLong(C3,C4.C5,C6,C7.C8,C9,C10,C11)
planet ecl lat (deg) 1.035218287 =PlanatLat(C3,C4.C5,06.C7.C8,C9.C10,C11)
planet RA (hours) 11.17527609 =DDDH(ECRA(C16.0,0,C17.0,0.C8.C9.C10))
planet dec (deg) 6.430406407 =ECDec(C16.0.0,C17.0.0.C8.C9.C10)

Figure 69. Finding the position of a planet by a more precise method.
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The distance, light-travel time and angular size of a planet
During the course of our calculations in Section 54 to determine the position of a planet we found the
distances » and R of the planet and the Earth, respectively, from the Sun. We can quite easily use these
values together with the heliocentric longitudes / and L to calculate the planet’s distance. p, from the Earth.
The situation is drawn in Figure 70. The planet, P. does not lie in the plane of the ecliptic. so its heliocentric
latitude, w. must be taken into account. The formula is

] 11y i -
: 4 - q QP OXINM e NI S

Lo (OO
BN 1

p: = R*+ % = 2Rrcos(l — L)cos y.

It is usual to express r and R in astronomical units (AU) where 1 AU is the semi-major axis of the Earth’s
orbit. p is then the distance of the planet from the Earth measured in AU.

Having calculated p, itis then an easy matter to find the light-travel time, 7. the time taken for the light
to reach us from the planet. When we view a planet now, we see it in the position it occupied 7 hours ago,

given by
T = 0.1386p hours,

where p is expressed in AU.
We can also find the apparent angular diameter, 6, of the planet given by
6 — ﬂl
p
where p is again expressed in AU and 6, is the angular diameter of the planet when it is at | AU from the
Earth. Values of 6, are given in Table 8.
We shall calculate the distance, the light-travel time and the apparent angular diameter of Jupiter on

22 November 2003.

Method Example

1. Findr, R, !P. L and y as in §54. ro= 5.397 121 AU
R = 0.987 847 AU
![, = 156.236900 degrees
L = 59.274 748 degrees
yoo= 1.076 044 degrees

2. Calculate p* = R+ 1% —2Rrcos (I, — L) cos . pt = 31.397037 AU?

3. Take the square root to find p. p = 5.603 AU

4, Multiply by 0.1386 to find 7: convert T = 46m 365

to minutes and seconds (§8).
5. Find 6 from 8 = r:) 0 = 35.1 arcsec

The Astronomical Almanac quotes p = 5.60 AU, T = 46m 34s and 6 = 35.0" for Jupiter on this day.
The spreadsheet for this calculation is called PlanetVis and includes other calculations to do with the
visual aspect of a planet. It is given in Section 60, Figure 72. The corresponding spreadsheet functions are

defined there too.
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Figure 70. Finding the distance of a planet.

The phases of the planets

At any point in the orbit of a planet, the hemisphere which faces towards the Sun is brightly illuminated
while the other half of the planet’s surface is dark. The fraction of the surface that we can see from the Earth,
however, is that part lying on the hemisphere facing the Earth which usually overlaps both the bright and
the dark sides. We are presented therefore with a view of the planet’s disc that is not uniformly illuminated
but which contains a bright segment, the rest of the disc being dark and usually invisible. As the relative
positions of the Earth, the planet and the Sun vary, so the area of the visible disc that is illuminated changes.
The phase is defined to be the fraction of the visible disc that is illuminated.

In Figure 70, the angle (4 — /) at P is the solar elongation of the Earth as measured at the planet. We
represent this angle by d. Thus

d=A—1l.

The phase, F, is related to d by the formula

1

F = §(l+c0.sd).

£ always lies in the range 0 to 1. When F' = 0, the whole of the dark side of the planet is towards the Earth,
This can only happen for the inner planets Mercury and Venus. When F = 1, the whole of the bright side
faces the Earth.

We shall find the phases of Mercury and Jupiter on 22 November 2003 as our example.
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Method Example
I.  Calculate d = A — I using the method Mercury:  d, = —34.082
outlined in §54 to find A and /. Jupiter: dy, = 10736
2. Find F = % (1+cosd). Mercury:  F, = 0.91
Jupiter: o= 099

The Astronomical Almanac gives phase values of 0.90 and 0.99 for Mercury and Jupiter respectively.
The spreadsheet for this calculation is called PlanetVis and includes other calculations to do with the
visual aspect of a planet. It is given in Section 60, Figure 72. The corresponding spreadsheet functions are

defined there too.

The position-angle of the bright limb

Figure 71 shows the appearance of a planet whose phase is about F = 0.7. The dashed outline is of that
part of the disc which is invisible, and the line NS is the projection of the Earth’s axis onto the disc. The
terminator, the line dividing night from day. is the curve AB. Position-angles are measured anticlockwise
from the north. Thus points A and B are at position-angles 8, and 6,. The point C, halfway between A and
B on the circumference of the disc, is the midpoint of the bright side and it defines the position-angle. . of
the bright limb. Hence

x==(6,+86).

| —

We can easily calculate y provided we know the equatorial coordinates of the planet (¢.8) and of the Sun
(Ol 8 ) Then

cosd - sin(o . — o)

¥ =tan - - e
cos8sind.. —sindcosd . cos (o, — )

For example, what was the position-angle of the bright limb of Mercury on 22 November 20037
The Sun’s coordinates were ¢ . = 15h48m13s, §. = —1Y 59" 32" and Mercury’s coordinates were

a = 16h52m02s, 8 = —24° 38" 41",
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Method Example
1. Find the right ascension and declination of the planet (§54). o = 16h 52m02s
§d = -24° 38 41"
2. Find the coordinates of the Sun (§46). Oy = 15h 48m 135
15 = —19° 59" 32"
3. Convert both sets of coordinates to decimal form (§§7 and 21). o = 16.867 222 hours
6 = —24.644722 degrees
a- = 15.803611 hours
8- = —19.992222 degrees
4. Find Act = . — o. Convert to degrees by multiplying by 15 (§22). Ao = —15.954165 degrees
5. Findy =cosd- sinAc. y = —0.258304
6. Findx=cosdsind . —sindcosd . cosAa. ¥ = 0.066018
7. Find y = tan"' (%). Remove the ambiguity from ¥ = —75.663043 degrees
taking inverse tan using the signs of x and v, referring to (already in correct quadrant; add
Figure 29, and adding or subtracting 180 360 to bring into the range 0-360)
if necessary to bring the result into the correct quadrant. x = 284.3 degrees

The spreadsheet for this calculation is called PlanetVis and includes other calculations to do with the
visual aspect of a planet. It is given in Section 60, Figure 72. The corresponding spreadsheet functions are

defined there too.

Terminator

S\ B

Figure 71. The position-angle of the bright limb.
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The apparent brightness of a planet

Our calculations so far have given us the position, the solar elongation (Section 52), the distance from the

Earth, the apparent angular diameter, the phase, and the position-angle of the bright limb of a planet. We
need only add the apparent brightness to the list to obtain all the important parameters of the planet’s visual
aspect.

Brightness is usually measured in magnitudes, »1, on a non- linear scale such that decreasing brightness
goes with increasing magnitude. The brightest stars have a magnitude of about 1 while the faintest stars just
visible with the unaided eye are of magnitude 6. The ratio in the light power flux between one magnitude
and the next is about 2.5. The Sun, very bright at the Earth, has a visual magnitude of - ~26.74 while the
Moon’s magnitude at opposition is —12.73. The planets range from about m = —4 for Venus at its most
brilliant to m = + 14 for Pluto (strictly no longer classified as a planet) at its brightest.

The variation in a planet’s brightness is caused by several factors. First the Sun’s light flux on the planet
varies inversely as the square of its distance, r, from the Sun. Then the amount of that light reradiated
towards the Earth depends on the phase, F, and a *brightness factor’, V;, , the latter being a measure of the
reflectivity of the planet combined with the area of the planet’s disc. Thc larger the planet’s area, the more
light it intercepts from the Sun and hence the more it radiates towards the Earth. Finally, the light flux
received from the planet varies inversely as the square of the planet’s distance, p, from the Earth.

We can obtain an approximate value for the apparent magnitude of a planet from the formula

~ rp
m = Slog, (,_) + Vo,
VF

where r and p are measured in AU. The values of V}, are listed in Table 8.
As an example, let us calculate the apparent m 1umluLlL of Jupiter on 22 November 2003.

Method Example
1. Find the values of r, p and F using the methods given in §§54. 57 and 58. S 5397 AU
p = 5.603 AU
F = 0.99
2. Calculate m = 5log (ﬂ%) +V,,. rand p must both be expressed in AU. m = =2
VF
The value of m given in the Astronomical Almanac for Jupiter on 22 November 2003 is m = —1. 9. In

general, our calculations should be correct to within a magnitude or so. No account has been taken of
atmospheric extinction (see Section 43), which can increase the apparent magnitude of a star or planet
near the horizon by 2 or 3. Nonetheless, our calculations w ill provide a fair guide of what to expect.

The distance, light time, angular diameter, phase, position-angle of the bright limb, and the approxi-
mate magnitude of a planet are all parts of its visuz 1l aspect (i.e. its appearance when viewed from Earth)
and these calculations are swept up into one spreadsheet called PlanetVis, Figure 72. As in PlanetPos
(Section 54), we make use of the spreadsheet function VLOOKUP to extract data from a table contained
on a second spreadsheet (rows 22 and 31). We have also defined three additional spreadsheet functions to
make life easier. The first of these to appear in the spreadsheet (row 20) is PlanetDist, taking nine arguments
which are the local civil time expressed as hours, minutes, and seconds, the daylight saving and time zone

offsets in hours. the local calendar date expressed as day, month, year, and the planet full name as a string

- == mw =W m M ™ @ @M @A A A~ANDND AN AN AR N0R M




The apparent brightness of a planet 141

(upper or lower case. or a combination). This function returns the Earth—planet distance in AU. The next
new spreadsheet function to appear is called PlanetHLong1 (row 23) which returns the planet’s heliocentric
orbital longitude in degrees. It takes the same nine arguments as PlanetDist. The third new spreadsheet
function is called PlanetRVect (row 30) and, as its name suggests, it returns the distance of the planet from
the Sun (i.e. the length of its radius vector) in AU: it has the same nine arguments as PlanetDist.



54 Coordinate systems &
90° @
¥ positive ¥ positive
X negative X positive 5
(-180°) 180° 0° (360°) =
y negative y negative [ a5
i x negative X positive
3 : 270° &=
t (-90°) E
] Figure 29. Removing the ambiguity on taking tan~' (y/x).
i) B G vew FJumt Fumat Ink Oas U:’:‘ﬂ;w'.v_‘wm T T T e T :0‘; E
' A B I c D E_ - Il o
4 [ 1 Ecllptlc to Equatonal Coordinate Conversion E
| 2
5 1 3 : { g ecl long deg— ompn: - RA hour 9 =DHHour(C27) g
i 4 ecl long min RA min 34 =DHMIn(C27)
? 5 ecl fong sec 10 RA sec 53.4 =DHSec(C27) E
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i : 7 ecl lat min 52 dec min 32 =DDMin(C21) &
4 8 ecl lat sec M dec sec 8.52 =DDSec(C21)} :
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J 131 eclon (deg)  139.6861111 =DMSDD(C3,C4.C5)
;' 14 2 eclat (deg)  4.875277778 =DMSDD(C6.C7.C8) E
{ 15, 3 eclon (rad)  2.437982558 =RADIANS(C13)
; 6 4 eclat (rad)  0.085089649 =RADIANS(C14) - =
g 17 5 obliq (deg)  23.43923176 =0bliq(C9,C10.C11)
§ 18 6 obliq (rad)  0.409091768 =RADIANS(C17) o
s 19 7 sindec  0.334394125 =SIN(C16)*'COS(C18)+COS(C16)"SIN(C18)*SIN(C15)
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H 23 N1 x -0.762511521 =COS(C15)
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3 26 14 RA (deg)  143.7225092 =C25-360"INT(C25/360) m
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